Showing posts with label 2000s. Show all posts
Showing posts with label 2000s. Show all posts

Human Exploration Using Real-Time Robotic Operations (HERRO) (2009-2011)

26 November 2011: Mars Science Laboratory rover Curiosity lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station, Florida, atop an Atlas V 541 medium-lift expendable rocket. The first launches of the HERRO mission in late 2030-early 2031 would see three Atlas V or equivalent rockets each launch a Truck rover bearing two Rockhound rovers to Mars. The three Truck/Rockhound combinations would land in widely separated 100-kilometer-diameter exploration regions. A six-person HERRO crew would arrive in Mars orbit in 2033 to begin a 549-day stay, during which they would remotely operate (that is, teleoperate) the rovers to explore the three regions. Image credit: NASA.

This (long) post outlines the most recent (2009) high-level NASA plan for landing humans on Mars. Called Design Reference Architecture (DRA) 5.0, it embraces long-held expectations regarding the role of astronauts in Mars exploration; the most significant of these is that when astronauts are dispatched to Mars for the first time they will land on its surface. 

The post then describes an alternative piloted Mars mission concept, called Human Exploration Using Real-Time Robotic Operations (HERRO), which could serve as an interim step designed to place on firmer ground planning for a follow-on piloted Mars landing mission. The HERRO concept could in fact provide data that would enable us to make an essential determination; that is, whether the traditional goal of humans on Mars remains a desirable one. 

In January 2007, NASA began efforts to update Design Reference Mission (DRM) 4.0, its plan for a piloted Mars landing mission. DRM 4.0 was based mostly on work performed in the 1998-2001 period. The updated DRM, the aforementioned DRA 5.0, was developed by the Mars Architecture Working Group (MAWG), which drew its more than 100 members from across NASA. The MAWG worked under the guidance of the Mars Architecture Steering Group (MASG). DRA 5.0 was formally published in July 2009. 

The term "Architecture" replaced the term "Mission" when referring to DRA 5.0 in part to signal a shift in NASA's plans for an evolutionary program of scientific space exploration. In addition to multiple piloted Mars landing missions, DRA 5.0 sought to include International Space Station (ISS) missions, piloted lunar exploration in the Constellation Program, and robotic Mars missions including Mars Sample Return (MSR) missions. 

DRA 5.0 scheduled its first piloted Mars landing for the late 2030s. Taking into account plans to cancel the Space Shuttle in 2010 that were hatched in the aftermath of the February 2003 Columbia accident, it replaced NASA's venerable semi-reusable winged crew and cargo spacecraft with the Ares I rocket for launching Orion crew vehicles and the Ares V heavy-lift rocket for launching cargo. The rockets, both under development in 2007, were to be derived from Shuttle hardware. Though named for the Greek god the Romans renamed Mars, the Ares rockets were primarily designed with Constellation Moon missions in mind. 

In documents used as sources for this post there occur discrepancies in spacecraft designs, weights, sizes, and other particulars. For example, a document will on one page display a spacecraft assembly sequence that requires three Ares V launches; on another page of the same document, the text will then describe an assembly sequence that requires four Ares Vs. 

These discrepancies are not explained, though they might reflect changing energy requirements for Earth-Mars and Mars-Earth minimum-energy transfers. Mars has a decidedly elliptical orbit about the Sun, so the energy required to visit and return from it changes markedly from one minimum-energy Earth-Mars transfer opportunity to the next; such opportunities occur every 26 months. To avoid confusion, in most cases in this post the DRA 5.0 and HERRO spacecraft appear in the forms that occur most often in their respective study documents.

The Shuttle-derived Ares I crew rocket (left) and Ares V cargo rocket as envisioned in 2009. Mars DRA 5.0 would require a minimum of three Ares I rockets and 21 Ares V rockets launched over a period of about eight years to explore three 100-kilometer-diameter exploration regions on Mars. In addition to the three medium-lift rockets described in the image at the top of this post, the HERRO mission would need one Ares I rocket and four Ares Vs to explore three 100-kilometer-diameter regions. Twenty-six months would separate the medium-lift rocket launches from the HERRO Ares I and Ares V launches; the Ares Vs would be launched and their payloads joined in Earth orbit over a period of about five days. Image credit: NASA.

A DRA 5.0 mission would begin with four Ares V launches from NASA Kennedy Space Center (KSC) in Florida. Two Ares Vs would each boost into low-Earth orbit a 28.8-meter-long, 96.6-ton Nuclear-Thermal Rocket (NTR) core stage. The NTR stage would contain liquid hydrogen actively cooled to prevent boiloff. Two more Ares Vs would each place into orbit an approximately 64-ton payload packaged inside a 30-meter-long Mars aeroshell with a mass of about 43 tons. In addition to enabling aerocapture and atmosphere entry at Mars, the bullet-shaped "triconic" aeroshells would serve as streamlined Earth launch shrouds. 

The stages and aeroshells would rendezvous and dock autonomously in low-Earth orbit to form an outwardly identical pair of cargo spacecraft. Neither spacecraft would carry a crew as it ignited its three 25,000-pound-thrust NTR engines to begin a minimum-energy Earth-Mars transfer lasting about 350 days.

Near Mars, the two cargo spacecraft would cast off their NTR core stages. One aeroshell, containing a 63.7-ton Mars Descent/Ascent Vehicle (MDAV) lander, would perform an aerocapture maneuver in the thin martian atmosphere to slow itself so that the planet's gravity could capture it using minimal propellants; then, after rising to apoapsis (orbit high point), it would reenter the atmosphere.

After any aeromaneuvers required to reach its preselected landing site, the MDAV would discard its two-part aeroshell, ignite descent rockets, and land in a level area near the center of a 100-kilometer-diameter exploration region. Orbital mechanics and aeromaneuvering limitations would mean that DRA 5.0 landers could not land at high-latitude and polar sites.

Following touchdown, the MDAV would deploy a nuclear power system on a robotic cart. Trailing cables, it would move a safe distance away from the landing site before power system activation. The MDAV would then begin splitting carbon dioxide drawn from the atmosphere to fill its empty oxidizer tanks with liquid oxygen. The first Mars mission crew would not leave Earth if the MDAV failed to fill its tanks.

The other aeroshell, containing a 64.3-ton Surface Habitat (SHAB) lander, would not land immediately. Instead, it would ignite rocket motors at apoapsis to raise its periapsis (orbit low point) out of the martian atmosphere and achieve a stable orbit. There it would remain awaiting arrival of the first six-person DRA 5.0 Mars landing crew in about 18 months.

The spacecraft at the top in the illustration above is the DRA 5.0 Mars Transfer Vehicle (MTV) for carrying the crew to and from Mars orbit; the spacecraft at the bottom could be either of the two cargo spacecraft. They are shown as they would appear in Earth orbit just before departure for Mars. Image credit: NASA.

The Mars Transfer Vehicle (MTV) bearing the first crew would leave Earth orbit 26 months after the first two cargo spacecraft. In the months prior to departure, three Ares V rockets would place into low-Earth orbit an NTR core stage, a "saddle-shaped" truss structure containing a drop tank, and a "supporting payload." They would rendezvous and dock autonomously. The completed MTV would measure 96.7 meters in length and have a mass of 356.4 tons. 

The supporting payload, located at the front of the newly assembled MTV, would include four solar arrays and an inflatable Transhab crew module with a docking port at its front. Within a short saddle truss mounted behind the Transhab the supporting payload would include a cylindrical contingency food container and a backup docking port. 

The food container would be called into play if the astronauts could not land on Mars; in that event, they would be required to remain on board the MTV in Mars orbit long enough for Earth and Mars to align to permit a minimum-energy Mars-Earth transfer, a period of about 500 days. Its contents might also be put to use if, after landing successfully on Mars, the crew had to evacuate the surface early.

The food container was not the only contingency hardware included in DRA 5.0. At the time NASA launched the first MTV, it would also launch four more Ares V rockets carrying two NTR core stages and two aeroshells containing MDAV and SHAB landers. The latter would be virtually identical to the first pair launched 26 months earlier. The NTR stages and aeroshell/lander combinations would autonomously dock in orbit to form two more cargo spacecraft. 

The second set of cargo spacecraft would be intended to serve the crew of the second Mars landing mission, which would leave Earth orbit in the second MTV 26 months after the first. They could, however, also serve as backups for the first Mars landing crew's MDAV and SHAB landers. They would reach Mars about 170 days after the first crew. If the first crew were required to use them, the second crew's departure from Earth would be delayed until a third set of cargo spacecraft could reach Mars.

With the MTV assembled in Earth orbit, the first Mars landing crew would lift off in an uprated Orion spacecraft atop an Ares I rocket. They would dock their nine-meter-long crew transport, developed for the Constellation lunar program, with the MTV front docking port on the inflated Transhab, then would enter the MTV and check out its systems. A standard Orion atop an Ares I and a repair crew would stand by at NASA KSC, ready to provide assistance if the MTV failed its orbital checkout. 

An alternate launch configuration would see the uprated long-lived Orion boosted to Earth orbit on an Ares V rocket as part of the supporting payload. In that case, the crew, launched separately in a standard Orion on an Ares I, would dock with the MTV's backup docking port. The standard Orion used for crew delivery would be cast off before the MTV left Earth orbit for Mars.

Assuming the MTV passed orbital checkout, its three NTR engines would ignite to perform a 57.8-minute Trans-Mars Injection (TMI) burn. The crew would then settle in for a weightless Earth-Mars transfer lasting about 180 days.

As Mars loomed large ahead, the MTV's NTR engines would fire for 16 minutes to slow it so the planet's gravity could capture it into orbit. Following the Mars Orbit Insertion (MOI) burn, the crew would mothball the MTV and transfer in the Orion spacecraft to the orbiting SHAB. After a successful SHAB checkout, the astronauts would command the Orion to undock, then would fire the SHAB's deorbit engines. Following reentry, aeromaneuvers, aeroshell separation, and descent, the SHAB bearing the crew would land near the MDAV. The Orion, meanwhile, would return to the MTV, dock, and shut itself down.

After six weightless months in interplanetary space, the crew would need to adapt to life in Mars surface gravity, which is a little more than a third as strong as Earth surface gravity. Drawing on advice from a 13-member Human Health and Performance Team, the MAWG/MASG opted for a one-month acclimatization period after landing, during which the astronauts would inflate the SHAB habitat and perform other "initial setup" activities, such as deploying crew rovers. The MAWG/MASG assumed that Mars gravity — possibly in combination with an exercise regimen — would be sufficient to maintain astronaut health. This would not, however, have been shown to be correct before the first Mars landing mission.

A Mars DRA 5.0 landing site. At left, in the middle distance, stands the MDAV beside an unpressurized crew rover. In the foreground at right, a small pressurized crew rover stirs up dust as it crawls over the surface. Behind it stands the SHAB lander, the six-person crew's home on Mars for about 500 days, with a second pressurized crew rover to its right and an unpressurized (possibly robotic) rover nearby. Image credit: NASA.

The overriding objective of the DRA 5.0 surface missions would be acquisition of scientific knowledge. This would take in goals which have historically been among the most significant justifications of space exploration. All would be related through the science of geology since rocks can serve as recording devices for those who can read them. Goal I would focus on whether life ever arose on Mars, while Goal II would emphasize Mars climate history and processes. The most overtly geological would be Goal III, which would focus on the evolution of the surface and interior of Mars. 

The MAWG/MASG examined three candidate Mars surface mission strategies. The Mobile Home strategy assumed the presence of large robust pressurized crew rovers towing trains of trailers bearing exploration equipment, including a drill rig for sampling the subsurface to a depth of hundreds of meters. The astronauts in the rovers would range for hundreds of kilometers over the martian surface. 

The less-ambitious Commuter strategy — the strategy the MAWG/MASG selected for DRA 5.0 Mars surface missions — would see reliance on a pair of "modest" pressurized rovers, two unpressurized rovers, and a trailer-mounted drill rig for sampling tens of meters beneath the martian surface. Prior to carrying out a series of monthly 100-kilometer traverses, each lasting up to two weeks, supply caches would be placed along prospective exploration traverse routes. How this would be accomplished was not explained in detail.

The Commuter pressurized rovers would be designed to carry two astronauts under normal operating conditions or four astronauts if a rover broke down far from the SHAB and its crew needed rescue. The "nimble" rovers would place astronauts in bulky Mars surface space suits within reach of diverse surface features of geologic interest, thus satisfying science requirements while limiting risk to Mars-walking astronauts.  

Both the Mobile Home and Commuter strategies would collect large quantities of samples which would be returned to the SHAB for analysis. About 250 kilograms of the most scientifically important samples would be retained for return to Earth; the remainder would be discarded. The MAWG/MASG expressed concern that 250 kilograms of samples might not fit readily into the MDAV ascent stage or the Orion capsule used to reenter Earth's atmosphere at the end of the mission.

The Mobile Home and Commuter strategies would face other operational challenges. Crews would not be able to rove far afield at times of heightened solar activity lest they suffer excessive radiation exposure. Even assuming advanced technology for generating and storing electricity, roving was not likely to occur every day during a traverse. The MAWG/MASG determined that, even if the pressurized rover moved as slowly as half a kilometer per hour, it might need to park every other day and deploy solar arrays with 400 square meters of area — which would extend for 40 meters in all directions from the rover — to make enough electricity to recharge its batteries after a day of driving. 

Possibly the most significant challenge from a scientific standpoint for DRA 5.0 astronauts would be observance of planetary protection protocols. The MAWG/MASG assumed that "Special Regions" on Mars where organisms might reside could be identified in advance of the piloted Mars landing missions based on data from robotic precursor missions. Such regions would only be explored using sterilized rovers remotely operated in real time (that is, teleoperated) by astronauts in the SHAB.

The third candidate surface exploration strategy, dubbed Telecommuter, received the least attention of the three described in the DRA 5.0 report. It would see astronauts in shirtsleeves in the SHAB rely mostly on teleoperated rovers to explore Mars; in-person astronaut exploration would be limited to places accessible from the SHAB on foot or using unpressurized rovers that might travel at most 20 kilometers during a traverse. 

The MAWG/MASG expected that deep drilling and extensive surface sampling would be extremely difficult within the confines of the Telecommuter strategy. On the plus side, the sterilized teleoperated rovers could venture with impunity anywhere on the surface of Mars without violating planetary protection rules.

Regardless of which surface strategy was used, after about 500 days on Mars the first DRA 5.0 astronauts would enter the MDAV ascent stage and ignite its engines to begin ascent to the MTV waiting in Mars orbit. The ascent engines would use the oxygen the MDAV collected from the martian atmosphere to burn methane it had brought from Earth. After docking and transfer to the MTV, the astronauts would cast off the MDAV ascent stage. They would also discard the contingency food canister after filling it with waste. 

The crew would then fire the NTR core stage engines for 10.7 minutes to perform Trans-Earth Injection (TEI). Following a six-month Mars-Earth transfer, the astronauts would board the uprated Orion, undock, and perform a burn that would bend its course to intersect Earth's atmosphere. They would then cast off the Orion service module. As the crew reentered the atmosphere and descended to a landing, the vacant MTV would swing past Earth and enter a graveyard orbit about the Sun.

Before the first DRA 5.0 crew returned to Earth, the second crew would set out for Mars. They would land in a new 100-kilometer-diameter exploration region in the equatorial or mid-latitudes. The third crew would depart Earth to visit a third such region before the second crew left Mars. The third crew's return to Earth, about eight years after the first DRA 5.0 mission began, would complete the initial scientific exploration of Mars by astronauts. 

The MAWG/MASG anticipated that the first three DRA 5.0 missions would together serve as a prudent stepping stone to Mars missions four through 10. These follow-on missions would, the DRA 5.0 report explained, see a "sustained human presence" on Mars, but they were otherwise undefined.

While the MAWG/MASG put the finishing touches on DRA 5.0, engineers and scientists at NASA Glenn Research Center (GRC), Case Western Reserve University, and Carnegie Mellon University prepared a preliminary plan for a piloted Mars mission that would carry the Telecommuter strategy to its logical conclusion. HERRO — which, it will be recalled, stands for Human Exploration Using Real-Time Robotic Operations — would see six astronauts on board a Crew Telerobotic Control Vehicle (CTCV) in elliptical Mars orbit explore three widely separated 100-kilometer-diameter regions on Mars using teleoperated Truck and Rockhound rovers. The CTCV would operate much as does an ocean research ship on Earth and the Trucks and Rockhounds would explore Mars's surface much as Remotely Operated Vehicles deployed from a research ship explore the ocean depths.

HERRO — it might be called "DRA 5.0 Telecommuter on steroids" — was intended as a prudent step toward Mars DRA 5.0, not a substitute. The HERRO study team argued that NASA needed to add interim steps to gain experience and knowledge ahead of piloted Mars landings. They noted, for example, that in 2009 no data existed on whether humans could remain healthy in Mars gravity for 500 days (this remains true at this writing). Assuming that they could without supporting data could make investment in piloted Mars landers, crew rovers, and surface suits a costly gamble.

Several of the NASA GRC engineers who participated in the MAWG also took part in the three-month HERRO study, which was performed under the auspices NASA's 2009 Innovative Partnerships Program. In fact, their participation in the DRA 5.0 and HERRO studies overlapped in time. They were thus well positioned to integrate HERRO and DRA 5.0. 

As described in the picture caption at the top of this post, a HERRO Mars mission would begin with launch of three medium-lift rockets. Each would carry an aeroshell containing a Truck rover bearing two Rockhound rovers. The three launches might occur in late 2030.

The HERRO team sought to employ technology under development for NASA robotic Mars missions in their mission design. The Truck/Rockhound combinations would each ride to Mars in an aeroshell similar to that designed for Mars Science Laboratory Curiosity, which at the time of the HERRO study in 2009 was scheduled to launch to Mars in 2011. They would land using skycrane systems similar to the one expected to gently lower Curiosity to Mars's surface in 2012. 

Two Truck/Rockhound combinations would land on opposite sides of Mars at sites near the center of their assigned exploration regions. The third would land in a  south polar region. 

Truck rover with Rockhound rovers packed within an aeroshell derived from that of the Mars Science Laboratory Curiosity rover. The skycrane landing system, which would ride atop the Truck, is not shown. Image credit: NASA.

If the three Truck/Rockhound combinations left Earth in 2030, the CTCV bearing the crew would depart for Mars in early 2033. The HERRO study team described a CTCV resembling the DRA 5.0 MTV that would require four Ares V launches. The first would place into low-Earth orbit a 24.8-meter-long, 51.6-ton supporting payload outwardly similar to that of the DRA 5.0 MTV apart from the addition of two large dish antennas for transmitting large quantities of data to Earth. The antennas would need to be deployed before the Transhab could be inflated. 

The second Ares V would place in orbit a 26.1-meter-long, 135.8-ton saddle truss and drop tank. Again, it would differ from its DRA 5.0 counterpart mainly by the presence of two antennas, this time for transmitting to and receiving from the Trucks and Rockhounds on Mars large quantities of real-time data. 

The third Ares V rocket would launch into Earth orbit a 26.6-meter-long, 136-ton in-line propellant tank and the fourth a 29.9-meter-long, 132-ton NTR core stage outwardly identical to the one on the DRA 5.0 MTV. Supporting payload, saddle truss and drop tank, in-line tank, and NTR core stage would then rendezvous and dock autonomously in low-Earth orbit to form the 106.9-meter-long, 455.4-ton CTCV.

CTCV supporting payload. The deflated Transhab with docking port and large antennas is at right; the small saddle truss with food canister, docking port, and twin solar arrays (shown here folded) is at left. Image credit: NASA.
Saddle truss with drop tank. The twin dish antennas for transmitting to and from the Truck and Rockhound rovers on Mars are stowed on the disc-shaped docking structure at left. Image credit: NASA.
CTCV in-line propellant tank. Image credit: NASA.
Nuclear-Thermal Rocket core stage with three engines. The CTCV could complete its mission with only two functioning engines. Image credit: NASA.
Fully assembled HERRO CTCV with deployed antennas, inflated Transhab, and docked long-lived Orion (right). Image credit: NASA.

The HERRO crew, which would comprise four geologists and two pilots, would lift off from Earth atop an Ares I rocket in an uprated, long-lived Orion spacecraft and rendezvous and dock with the CTCV front docking port on the Transhab. After CTCV checkout they would ignite the three NTR core stage engines to begin the TMI maneuver; unlike DRA 5.0, the HERRO TMI burn would be split into two parts to reduce propellant consumption. TMI Burn 1, which would place the CTCV into an elliptical orbit about Earth, would expend all of the liquid hydrogen in the saddle truss drop tank; the tank would be discarded before TMI Burn 2, which would occur at next perigee. 

Shortly after TMI Burn 2, the crew would set the CTCV spinning end-over-end at a rate of 2.7 rotations per minute. This would produce acceleration in the Transhab equal to the pull of gravity on Mars's surface, thus providing an opportunity to confirm that Mars gravity would be sufficient to keep future landing crews healthy. The astronauts would then settle in for a six-month Earth-Mars transfer. 

The HERRO team proposed that the crew sleep and work in the Transhab's central core, which would be surrounded by tanks holding about 14 tons of water. By spending 16 hours of every day in the water-lined Transhab core, the astronauts would greatly reduce their exposure to Galactic Cosmic Radiation. 

The crew would despin the CTCV as they approached Mars, then would ignite the NTR core stage engines to perform MOI. The planet's gravity would capture the spacecraft into an elliptical, steeply inclined orbit with a period of 12.3 hours, or half a 24.6-hour martian day (known as a sol). The CTCV would reach apoapsis over the sunlit hemisphere of Mars twice per sol, with periapsis occurring twice per sol low over the nightside equator. The crew would then spin up the CTCV to restore Mars-level artificial gravity in the Transhab. 

The CTCV in artificial-gravity configuration. Red arrows indicate the spacecraft's end-over-end rotation. During flight to and from Mars and in Mars orbit the twin solar arrays and large antennas would respectively point continuously toward Sun and Earth. The small antennas would point toward the Truck and Rockhound rovers on Mars. Image credit: NASA.

As might be expected, the CTCV's orbital parameters were chosen to place it in line-of-sight radio contact at apoapsis with the Trucks and Rockhounds at their landing sites on opposite sides of Mars. This would enable two two-person geologist teams to take turns teleoperating the Trucks and Rockhounds in two work shifts, each lasting up to eight hours per sol, yielding a total teleoperations time per sol of up to 16 hours. 

Over the course of the 549-day CTCV stay in Mars orbit, lighting conditions at the Truck/Rockhound sites during the teleoperations shifts would change. At the non-polar sites shifts would start in early morning during the first third of the mission, around noon during the middle third, and in early evening during the final third. The south polar site would be in radio contact for two periods per sol totaling up to 10.6 hours during the first two-thirds of the mission.

The exploration regions centered on the Truck/Rockhound landing sites would each contain several one-kilometer-diameter areas of interest up to 20 kilometers apart. Within these the teleoperators would seek to identify 10-meter-diameter science sites. The rovers would spend up to two weeks within an area of interest and about a sol at each science site. 

Truck rover bearing two Rockhound rovers. The image shows the articulated control arms attached to each wheel, twin stowed Rockhounds, the 10-sided solar array, and twin boom-mounted high-gain antennas. Image credit: NASA.
Rockhound rover. The light blue boxes at the corners of its two-part body are navigation cameras and laser terrain mappers. Note the six "whegs," the mid-body hinge, hands with fingers and thumbs, and a very normal-appearing geology hammer. Image credit: NASA.

The HERRO team described their teleoperated Trucks and Rockhounds in considerable detail. The 800-kilogram Trucks, which could travel at up to 3.6 kilometers per hour, would each have four large independently motorized wheels mounted on "articulated control arms." The arms would permit the Truck to lower its two-meter-square chassis to the surface. This would enable two Rockhounds to disembark for exploration or board for long-range transport or battery charging. 

A box on the Truck located behind the Rockhound charging stations would support two low-gain antennas for relaying transmissions to and from the Rockhounds, a mast bearing a vertical four-meter-diameter solar array, and two boom-mounted high-gain antennas for relaying transmissions to and from the CTCV. In addition to batteries, the box would house a drill for sampling tens of meters below the surface and a lab for analyzing samples the drill and Rockhounds collected. 

The 145-kilogram Rockhound rover would resemble a mythical centaur. At the front of its horizontal aluminum-frame body would be mounted a vertical robotic torso with shoulders, two arms with elbows and hands, and three cameras in place of a head. It would stand a little more than a meter tall on a level surface. 

A motorized "hinge" would divide the rectangular Rockhound body into two 0.5-meter-square parts and a single motor drawing power from batteries would drive six wheel-legs ("whegs") arrayed along its sides. A low-gain antenna for transmissions to and from the Truck, navigation cameras, a small "arsenal" of science instruments, and a rack of tools including a geology hammer would round out its description.

The HERRO team explained that the Rockhound mobility system was based on a "biologically inspired" design developed, built, and tested by Case Western Reserve University. Its movement scheme was modeled on that of the lowly cockroach, which can flex its body and alter its six-legged gait to climb over obstacles taller than it is. 

The agile little rover would move at a top speed of about 10 centimeters per second and would be able to climb and descend 45° slopes of loose rocky material. By raising the front half of its body and tilting forward its humanoid torso, it would be able to "rear up" against rock walls to examine and sample features more than two meters above the ground. It would turn its torso 180° to drive backwards and to reach the tools stored on its aft section. 

The Rockhound would employ four teleoperational modes. Mode 1, called Traverse to New Location, would see it leave the Truck and move over easy terrain for about an hour at a time. No science would be performed and the rover and its teleoperator on board the CTCV would rely on low-resolution navigation cameras and laser terrain mappers to avoid obstacles. Mode 2, Visual Imagery, would see the Rockhound park in one location while its teleoperator put to use hand tools and microscopic, multispectral, high-resolution visual, and other imaging and sensing systems. 

Quiescent/Operator Off Duty, the third teleoperational mode, would see the Rockhound resting in its charging station on board the parked Truck. Charging the Rockhound's batteries would require about 16 hours using an induction charging system that would need no physical contact. The HERRO study team expected that induction might avoid problems created by ever-present airborne Mars dust that could plague a system reliant on a plug and socket. Mode 4, Rockhound Scout Mode, would see the rover move over the surface under teleoperator control for up to eight hours at a time in search of scientifically interesting sites. 

In some HERRO documents, the study team suggested that the HERRO mission might include an MSR option. This could take either of two forms: an independent robotic MSR mission or an MSR mission that would rely on the Truck/Rockhound rovers for sample collection. 

In the second instance, three MSR lander/ascent vehicles would launch to Mars at the same time as the Truck/Rockhounds. This would add three medium-lift rocket launches to the three slated to occur 26 months ahead of the CTCV launch in the baseline HERRO mission. In both cases, the MSR vehicles would land in the same three regions as the Truck/Rockhound combinations.

In both HERRO MSR scenarios, an independently launched teleoperated sample retrieval vehicle, based possibly on the Orion service module, would collect the sample canisters launched to Mars orbit by the three MSR ascent vehicles and deliver them to the CTCV. Sample retrieval in Mars orbit would, the HERRO team estimated, require retrieval vehicle maneuvers spanning about four months.

As their mission in Mars orbit reached its end, the HERRO mission crew would stop the CTCV's spin, recover the MSR sample canisters, discard the waste-filled food canister, and ignite the three NTR engines to perform TEI. As Mars shrank behind them, they would spin up the CTCV again. About six months later, they would stop the CTCV's spin for the final time, take their places in the uprated Orion, and undock. A short Orion burn would place them on course for Earth-atmosphere reentry. 

Meanwhile, the CTCV would swing past Earth. The HERRO study team suggested that it might adjust its course so that it would travel to the Earth-Moon L1 point, where it would park pending possible refurbishment and reuse.

The DRA 5.0 study was completed in 2009 in part to support the activities of the Review of U.S. Human Spaceflight Plans Committee chaired by former aerospace executive Norman Augustine. The Augustine Committee was appointed to advise the new Administration of President Barack Obama concerning NASA's path forward in the 21st century. 

The Augustine Committee requested a briefing on the HERRO study. The briefing helped to inform an approach to NASA's future that the Augustine Committee dubbed the "Flexible Path."
 
As stated at the beginning of this post, the MAWG/MASG envisioned that DRA 5.0 missions would be reached through interim missions — specifically, astronaut stays on board ISS and robotic Mars and piloted Moon missions. The Flexible Path called for new interim missions to be added to this sequence. Although HERRO is not referred to by name in the Augustine Committee's October 2009 final report, among the missions on the Flexible Path was a Mars orbital mission including "joint robotic/human exploration and surface operations [with] sample return."

Adding interim steps to existing U.S. space programs is nothing new. The most obvious example is the addition of Gemini to the NASA piloted program in 1962, a step made necessary when Apollo, which had been conceived initially as mainly an Earth-orbital program, became the U.S. lunar program. Gemini provided opportunities for astronauts, flight controllers, and others to develop new spaceflight skills and for life scientists to determine whether humans could survive in space long enough to reach and return from the Moon.

View of the Gemini VII spacecraft from the cockpit of Gemini VI-A in Earth orbit, 15 December 1965. Gemini VII and Gemini VI-A performed the first close rendezvous between two piloted spacecraft. Image credit: NASA.
Thumbs up: Robonaut II, a humanoid robotic torso developed by NASA Johnson Space Center (JSC) and General Motors, participates in a 2011 field exercise among the volcanic landscapes near Flagstaff, Arizona. Robonaut II's predecessor, the NASA JSC/Defense Advanced Research Projects Agency Robonaut robotic torso, was the inspiration for the HERRO Rockhound torso. Robonaut II is shown here attached to the front of a small remotely operated rover. Image credit: NASA.

Spaceflight planners suggested interim steps toward humans on Mars long before HERRO. In the 1960s, for example, they proposed piloted Mars and Venus flyby and orbiter missions. In 1993, in the waning days of the abortive Space Exploration Initiative, NASA GRC's Geoffrey Landis, a HERRO study participant, proposed a scenario he dubbed "Footsteps to Mars." These and other proposed interim missions leading toward humans on Mars can be explored by following the links in the "More Information" section below.

In the years since the 2009 DRA 5.0 and HERRO studies, NASA robotic Mars missions have displayed both the capabilities and limitations of robotic landers and rovers on Mars that are remotely operated from distant Earth. The Curiosity lander, which reached Mars on 6 August 2012, proved the capabilities of its aeroshell and skycrane systems. As of July 2022, after nearly a decade on Mars, the Curiosity rover had traversed only 28.15 kilometers. 

Lunar and planetary surface teleoperations remain of interest both inside and outside NASA. In the years since the HERRO study, astronauts on board the ISS in Earth orbit have teleoperated robots on Earth. The lunar-orbiting Gateway station, now under development in NASA's Artemis lunar program, is intended to support teleoperation of exploring robots on the Moon. 

Sources

Human Exploration of Mars Design Reference Architecture 5.0, NASA-SP-2009-556, Mars Architecture Steering Group, B. Drake, editor, July 2009.

COMPASS Final Report: Human Exploration Using Real-Time Robotic Operations (HERRO) — Rockhound Design, CD-2009-34, NASA Glenn Research Center/Case Western Reserve University/Carnegie Mellon University, August 2009.

COMPASS Final Report: Human Exploration Using Real-Time Robotic Operations (HERRO) — Truck Design, CD-2009-35, NASA Glenn Research Center/Case Western Reserve University/Carnegie Mellon University, August 2009.

COMPASS Final Report: Human Exploration Using Real-Time Robotic Operations (HERRO) — Crew Telerobotic Control Vehicle (CTCV) Design, CD-2009-36, NASA Glenn Research Center/Case Western Reserve University, September 2009.

Seeking a Human Spaceflight Program Worthy of a Great Nation, Review of U.S. Human Spaceflight Plans Committee, October 2009.

"HERRO (Human Exploration Using Real-Time Robotic Operations): A Robotically Intensive Strategy for Human Exploration," G. Schmidt and Steve Oleson, NASA Glenn Research Center, presentation materials, 28 October 2009.

"HERRO: A Science-Oriented Strategy for Crewed Missions Beyond LEO," AIAA-2010-69, G. Schmidt, G. Landis, S. Oleson, S. Borowski, and M. Krasowski; paper presented at the 48th AIAA Aerospace Sciences Meeting in Orlando, Florida, 4-7 January 2010.

"Human Exploration of Mars Design Reference Architecture 5.0," JSC-CN-19120, B. Drake, S. Hoffman, and D. Beaty; paper presented at the IEEE Aerospace Conference in Big Sky, Montana, 6-13 March 2010. 

"Human Exploration Using Real-Time Robotic Operations (HERRO) — Crew Control Vehicle (CTCV) Design," AIAA-2010-6817, S. Oleson, M. McGuire, L. Burke, D. Chato, J. Fincannon, G. Landis, C. Sandifer, J. Warner, G. Williams, T. Colozza, J. Fittje, M. Martini, T. Packard, D. McCurdy, and J. Gyekenyesi; paper presented at the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exposition in Nashville, Tennessee, 25-28 July 2010.

"HERRO Missions to Mars and Venus using Telerobotic Surface Exploration from Orbit," G. Schmidt, G. Landis, and S. Oleson; paper presented at the AIAA Space 2011 Conference & Exposition in Long Beach, California, 26-29 September 2011.

More Information






Venus is the Best Place in the Solar System to Establish a Human Settlement (2003)

A dirigible approaches an outpost in the atmosphere of Venus. Image credit: NASA.

There's no award for "Most Imaginative Space Engineer," but if there were, Geoffrey Landis would certainly be a top contender. In fact, if such an award is ever created, it should perhaps be named the Geoffrey, in parallel with science fiction's Hugo Award, which owes its name to pioneering author, editor, and publisher Hugo Gernsback. Not incidentally, Landis owns a pair of Hugos; he received his first in 1992 for "A Walk in the Sun," a short story set on the Moon, and his second in 2003 for his story "Falling Onto Mars."

Landis is an engineer at NASA's Glenn Research Center (GRC) in Cleveland, Ohio. Much of his NASA work has centered on energy systems, with an emphasis on solar photovoltaic power. 

In a brief paper prepared for the February 2003 Space Technology and Applications International Forum in Albuquerque, New Mexico, Landis made a compelling case for Venus, not the Moon, nor Mars, nor a twirling sphere, torus, or tube in open space, as the ideal place to establish an off-Earth human settlement. Specifically, he set his sights on the Venusian atmosphere just above the dense sulfuric-acid clouds. Landis called it "the most earth-like environment (other than the Earth itself) in the Solar System." 

Most people think of Venus as a hell planet because they think only of its surface. By about 1960, scientists using Earth-based instruments had determined that Venus had a temperature of 342° C (648° F). Many, however, refused to believe that Venus could be so hot. Some tried to find a loophole: they hypothesized that the Venusian atmosphere was hot while its surface was cool enough for liquid water and life.

Mariner 2, the first successful interplanetary spacecraft, flew past Venus in December 1962. Its crude scanning radiometer found a lower temperature — around 230° C (450° F) — though one still much higher than most planetary scientists expected. Mariner 2 also determined that air pressure at the Venusian surface was at least 20 times Earth sea-level pressure.

For more than two decades, Venus was the Soviet Union's favorite Solar System exploration target. The Venera landers determined that its surface is made of basalt, a volcanic rock. They also found that the mean atmospheric pressure at the surface is 96 times Earth sea-level pressure and that the surface temperature averages about 462° C (863° F) with relatively modest day/night, latitude, and altitude variations

The Venusian atmospheric temperature, on the other hand, was found to vary significantly with altitude, a fact that the Soviet Union would put to good use. In June 1985, the Vega 1 and Vega 2 spacecraft released armored landers and lightly constructed rubber balloons as they flew past Venus on their way to Comet Halley. The Vega 1 lander touched down but returned minimal data. Vega 2 landed successfully and survived the hellish surface conditions for 56 minutes. 

The twin three-meter-diameter, helium-filled balloons deployed between 50 and 55 kilometers (31 and 34 miles) above the Venusian surface — that is, just above the cloud-tops, in the zone Landis saw as promising for human settlement. Their small instrument payloads transmitted data for approximately two days — until they exhausted their chemical batteries. 

In that time, the balloons rode the carbon dioxide winds from their deployment points over the nightside into bright Venusian daylight. The Vega 2 balloon travelled about 11,100 kilometers (6900 miles) and the Vega 1 balloon travelled 11,600 kilometers (7210 miles). When their instrument payloads exhausted their batteries, the balloons carrying them showed no sign of imminent failure. They might have lasted for months or even years.

Vega-type balloon on display at the National Air and Space Museum's Udvar-Hazy Center in northern Virginia, just outside Washington, DC. Image credit: Geoffrey A. Landis. 

The fragile balloons could last so long because 50 kilometers above Venus, just above the cloud tops, the temperature ranges from between 0° C to 50° C (32° F to 122° F) and the atmospheric pressure approximates Earth sea-level pressure. A thin fabric cover was sufficient to shield each balloon from sulfuric acid droplets drifting up from the cloud layer.

Venus settlers would float where Vega 1 and Vega 2 floated, but Landis rejected helium balloons. He noted that, on Venus, a human-breathable nitrogen/oxygen air mix is a lifting gas. A balloon containing a cubic meter of breathable air would be capable of hoisting about half a kilogram, or about half as much weight as a balloon containing a cubic meter of helium. A kilometer-wide spherical balloon filled only with breathable air could in the Venusian atmosphere lift 700,000 tons, or roughly the weight of 230 fully-fueled Saturn V rockets. Settlers could build and live inside the air envelope. 

The air envelope supporting a settlement would not necessarily maintain a spherical form. Lack of any pressure differential would allow the gas envelope to change shape fluidly over time. It would also limit the danger should the envelope tear. The internal and external atmospheres would mix slowly, so the settlement atmosphere would not suddenly turn poisonous, nor would the settlement rapidly lose altitude. 

A repair crew would not require pressure suits, Landis explained. They would, of course, need air-tight face masks to provide them with oxygen and keep out carbon dioxide; adding goggles and unpressurized protective garments would keep them safe from acid droplets.

Acid droplets in the Venusian atmosphere would no doubt be annoying, but Venus would lack the frequent toxic dust storms of Mars. Orbiting nearly twice as close to the Sun as does Mars, a Venusian solar farm would have available four times as much solar energy at all times — and with no dust storms to get in the way. Landis noted that solar panels could collect almost as much sunlight reflected off the bright Venusian clouds as they could from the Sun itself. 

Mars, the Moon, and free-space habitats all must contend with solar and galactic-cosmic ionizing radiation. A settlement 50 kilometers above Venus, by contrast, could rely on the Venusian atmosphere to ward off dangerous radiation. Radiation exposure would be virtually identical to that experienced at sea level on Earth.

Many aspiring space settlers assume that humans and the plants and animals they rely on (or simply like to have around) will be able to live in one-sixth or one-third Earth gravity — the gravitational pull felt on the Moon and on Mars, respectively — with no ill effects. The hard reality, however, is that no one knows if this is true. It is possible that astronauts living in hypogravity — that is, gravity less than one Earth gravity — will experience health effects similar to those they experience during long stays in microgravity (for example, on board the International Space Station). 

Venus is nearly as dense and as large as Earth, so its gravitational pull is about 90% that of humankind's homeworld. The likelihood that hypogravity will make long-term occupancy unhealthful might thus be reduced. 

The Venusian atmosphere is rich in resources needed for life and the Venusian surface, while hellish, would lay only 50 kilometers away from the settlement at all times. Landis suggested that Venus settlers might use a suspended super-strong cable to lift silicon, iron, aluminum, magnesium, potassium, calcium, and other essential chemical elements to the floating settlement. He noted that laboratory experiments aimed at producing robots hardy enough to function on Venus for long periods had already begun; operators might use such rovers to remotely mine the surface from the comfort of the floating settlement.

Landis pointed to the Main Asteroid Belt between Mars and Jupiter as a potential source of resources for Venus.  He noted that any given asteroid in the Main Belt is easier to reach from Venus than from the Earth or Mars. A spacecraft launched from Venus on a minimum-energy trajectory can, for example, reach resource-rich 1 Ceres, the largest asteroid, in a little less than an Earth year; a minimum-energy trip from Earth to 1 Ceres would need a little more than an Earth year. 

Image credit: NASA.

The large Main Belt asteroids are in fact generally located farther away from each other than they are from Venus. They also orbit the Sun much more slowly: 3 Vesta needs 1325 Earth days to circle the Sun once; 1 Ceres needs 1682 Earth days; 2 Pallas, 1686 Earth days; and 10 Hygeia, in the outer part of the Main Belt, 2035 Earth days. This means that minimum-energy transfer opportunities between Main Belt asteroids occur years or even decades apart. Opportunities for minimum-energy transfers between Venus and any Main Belt asteroid, on the other hand, occur about once per Venus year (that is, about once every 225 Earth days).

As the journeys of the twin Vega balloons illustrate, Venus atmosphere settlements would ride fast winds. Those near the equator would circle the planet every four days. This would mean, Landis explained, that they would experience a day/night pattern of two days of darkness followed by two days of light. He expected that settlements eager for a more Earth-like lighting pattern could migrate to the Venusian circumpolar regions, where a circuit around the planet would be shorter. 

If many "cloud cities" were eventually established in the atmosphere of Venus, then a preference for the poles might lead to crowding. If, on the other hand, any latitude were fair game, then Venus would offer for settlement a total area 3.1 times Earth's land area — that is, more than three times greater than the surface area of Mars. Landis wrote that, eventually, a "billion habitats, each one with a population of hundreds of thousands of humans, could. . . float in the Venus atmosphere."

Sources

Mariner Venus 1962 — Final Project Report, NASA SP-59, NASA Jet Propulsion Laboratory, 1965.

Soviet Space Programs 1980-1985, Nicholas L. Johnson, Volume 66, Science and Technology Series, American Astronautical Society, 1987, pp. 186-188.

"Colonization of Venus," Geoffrey A. Landis, Space Technology and Applications International Forum (STAIF) 2003, Albuquerque, New Mexico, 2-5 February 2003; American Institute of Physics Proceedings 654, Mohamed S. El-Genk, editor, 2003, pp. 1193-1198.

More Information

Centaurs, Soviets, and Seltzer Seas: Mariner 2's Venusian Adventure (1962)

Venus as Proving Ground: A 1967 Proposal for a Piloted Venus Orbiter

Floaters, Armored Landers, Radar Orbiters, and Drop Sondes: Automated Probes for Piloted Venus Flybys (1967-1968)

Two for the Price of One: 1980s Piloted Missions with Stopovers at Mars and Venus (1968)

Multiple Asteroid Flyby Missions (1971)

Footsteps to Mars (1993)

Mission to the Mantle: Michael Duke's Moonrise (1999-2009)

This NASA image of the gibbous Moon by photographer Lauren Harnett includes an intruder — the International Space Station (ISS) (lower right). The Moon, last visited by humans in December 1972, is about 384,400 kilometers away; ISS, permanently occupied since November 2000, is about 1000 times nearer Earth.

A casual glance at the Moon's disk reveals signs of ancient violence. Nearside, the lunar hemisphere we can see from Earth, is marked by gray areas set against white. Some are noticeably circular. The Apollo expeditions revealed that these relatively smooth basalt plains are scars left by large impactors — comets or asteroids — that pummeled the Moon more than 3.5 billion years ago. These gray areas cover about 20% of the lunar surface. They are concentrated on the nearside, the lunar hemisphere that faces the Earth.

An Earth-based observer cannot view the largest and oldest giant impact basin because it is out of view on the Moon's hidden farside. South Pole-Aitken (SPA) Basin is about 2500 kilometers wide, making it perhaps the largest impact scar in the Solar System. Lunar Orbiter data revealed its existence in the 1960s, though little was known of it until the 1990s, when the U.S. Clementine and Lunar Prospector polar orbiters mapped surface chemistry over the entire Moon. Their data showed that the basin floor probably includes material excavated from the Moon's lower crust and upper mantle. In the first decades of the 21st century, laser altimeters on the U.S. Lunar Reconnaissance Orbiter (LRO) and Japanese Kaguya spacecraft confirmed that SPA includes the lowest places on the Moon.

Lunar hemispheres centered on the Moon's highest point (left) and lowest point (right). Both occur in the Moon's Farside hemisphere and are believed to be associated with the excavation of the South Pole-Aitken Basin perhaps 4 billion years ago. On this U.S. Geologic Survey topographic map, blue indicates low areas and gray and black indicate high areas. 
South Pole-Aitken (SPA) Basin with major features labeled. The 140-kilometer-wide crater Antoniadi includes a 12-kilometer-wide unnamed crater, the floor of which is more than nine kilometers below the mean lunar radius (the lunar equivalent of Earth's sea level). It is the lowest point on the Moon. Image credit: NASA/DSFPortree.

Michael Duke, a retired NASA Johnson Space Center geologist with the Colorado School of Mines, participated in both Apollo and 1990s lunar explorations. In 1999, Duke was Principal Investigator (PI) leading a team that proposed a robotic SPA sample-return mission in NASA's low-cost Discovery Program. To fit under Discovery's mission cost cap of $150 million (in Fiscal Year 1992 dollars), Duke's team proposed "the simplest-possible mission" — a single lander with no sample-collecting rover, a lunar-surface stay-time of just 24 hours, and a low-capability lunar-orbiting radio-relay satellite (needed because farside is not in line-of-sight radio contact with Earth). Believing that these limitations added up to a high risk of mission failure, NASA rejected the 1999 Discovery proposal.

In 2002, however, the National Research Council's planetary science Decadal Survey declared SPA sample return to be a high scientific priority and, at the same time, proposed a new class of competitively selected medium-cost missions. The latter marked the genesis of NASA's New Frontiers Program, which originally had a cost cap per mission of $700 million.

The New Horizons Kuiper Belt Object (KBO) flyby mission was already under development when NASA created the New Frontiers Program. NASA gave New Frontiers a highly visible first mission by adopting New Horizons into the program. Selection of the KBO mission came to be regarded as the first New Frontiers proposal cycle, though it included no competition. NASA had taken a similar approach when it made Mars Pathfinder its first Discovery Program mission in 1992.

Geologist Michael Duke in 2004. Image credit: NASA.
Duke's team immediately began to upgrade its SPA proposal for the second New Frontiers proposal cycle. In October 2002, Duke described the new SPA mission design at the 53rd International Astronautical Federation Congress (the Second World Space Congress) in Houston, Texas. To avoid tipping off competing New Frontiers proposers, his paper provided only limited technical details.

Duke argued that the SPA sample-return mission could collect ancient deep crust and mantle rocks without a costly rover. Clementine and Lunar Prospector had shown that at least half of the surface material in the central part of SPA was native to the basin, so stood a good chance of having originated deep within the Moon.

Furthermore, Apollo demonstrated that any lunar site is likely to yield a wide assortment of samples because the Moon's low gravity and surface vacuum enable asteroid impacts to widely scatter rock fragments. The Apollo 11 mission to Mare Tranquillitatis, for example, found and returned to Earth rocks blasted from the Moon's light-hued Highlands. Duke proposed that the SPA sample-return lander sift about 100 kilograms of lunar dirt to gather a one-kilogram sample consisting of thousands of small rock fragments. These would have many origins, but a large percentage would be likely to have originated in the Moon's deep crust and mantle.

A SPA sample-return lander sifts lunar dust in quest of small fragments of lower crust and upper mantle material. The gray dome mounted sideways on the right side of the lander, above the sample arm attachment point, is the sample-return capsule for carrying a one-kilogram sample through Earth's atmosphere. Image credit: NASA.

NASA rejected the Discovery SPA mission in part out of concern for lander safety. Duke noted that, with the New Frontiers Program's $700-million cost cap, the SPA sample-return mission could include two landers. This would provide a backup in case one crashed. He pointed out, however, that automated Surveyor spacecraft of the 1960s had found the Moon to be a relatively easy place on which to land even without the benefits of 21st-century hazard-avoidance technology. Two landers would also increase the already good chance that the mission could collect samples representative of the basin's earliest history.

A $700-million budget would also enable a relay satellite "more competent" than its bare-bones Discovery predecessor. It might be placed in a halo orbit around the Earth-Moon L2 point, 64,500 kilometers behind the Moon as viewed from Earth. From that position, the satellite would permit continuous radio contact between Earth and the landers. A satellite in lunar orbit could remain in line-of-sight contact with both the landers and Earth for only brief periods.

NASA had argued that a single day on the Moon provided too little time to modify the SPA Discovery mission if it suffered difficulties. The SPA New Frontiers mission would, therefore, remain on the Moon for longer. Duke noted, however, that stay-time would probably be limited to the length of the lunar daylight period (14 Earth days) because designing the twin landers to withstand the frigid lunar night would boost their cost.

In February 2004, Duke's mission — christened Moonrise — became one of two SPA sample-return missions proposed in the second New Frontiers proposal cycle. In July 2004, NASA awarded Moonrise and a Jupiter polar orbiter called Juno $1.2 million each for additional study. In May 2005, the space agency selected Juno for full development.

Juno's selection did not end proposals for SPA Basin sample-return, though it did mark the beginning of the end of Duke's involvement. In the third New Frontiers proposal cycle, which began in 2009, a Jet Propulsion Laboratory/Lockheed Martin/Washington University in St. Louis team led by Brad Jolliff, Duke's deputy PI in the 2003-2004 cycle, proposed a SPA Basin mission called MoonRise. In 2011, the SPA sample-return mission was again selected as a New Frontiers finalist, but it lost out in the final selection to the OSIRIS-Rex asteroid sample-return mission. MoonRise was not selected as a finalist in the 2017 New Frontiers cycle.

Sources

"Sample Return from the Lunar South Pole-Aitken Basin," M. Duke, Advances in Space Research, Volume 31, Number 11, June 2003, pp. 2347-2352.

"NASA Selects Two 'New Frontiers' Mission Concepts for Further Study," D. Savage, NASA Press Release 04-222, NASA Headquarters, 16 July 2004.

NASA Facts: MoonRise - A Sample-Return Mission From the Moon's South Pole-Aitken Basin, NASA Facts, JPL 400-1408, June 2010.

"MoonRise: Sample Return from the South Pole-Aitken Basin," L. Akalai, B. Jolliff, and D. Papanastassiou; presentation to the International Planetary Probe Workshop, Barcelona, Spain, 17 June 2010.

Personal communication, B. Jolliff to D. Portree, 3 March 2018.

More Information

Peeling Away the Layers of Mars (1966)

An Apollo Landing Near the Great Ray Crater Tycho (1969)

Catching Some Comet Dust: Giotto II (1985)

Lunar GAS (1987)

NASA Glenn Research Center's 2001 Plan to Land Humans on Mars Three Years Ago

August 2014. Image credit: NASA.
In October 2001, at the 52nd International Astronautical Congress in the European aerospace center of Toulouse, France, nuclear propulsion engineers from NASA's Glenn Research Center (GRC) in Cleveland, Ohio, led by Stanley K. Borowski, Advanced Concepts Manager in GRC's Space Transportation Project Office, described a variant of NASA's 1998 Mars Design Reference Mission (DRM) based on Bimodal Nuclear-Thermal Rocket (BNTR) propulsion. The BNTR DRM concept, first described publicly in July 1998, evolved from nuclear-thermal rocket mission designs Borowski and his colleagues had developed during President George H. W. Bush's abortive Space Exploration Initiative (SEI), which got its start with a July 1989 presidential speech commemorating the 20th anniversary of Apollo 11, the first piloted Moon landing mission.

This post contains more than its share of significant acronyms. As an aid to the reader, these are grouped alphabetically and defined at the bottom of the post, just ahead of the list of sources.

NASA's first Mars DRM, designated DRM 1.0 in 1997, was developed by a NASA-wide team during the 1992-1993 period. It was based on Martin Marietta's 1990 Mars Direct mission plan. SEI's demise temporarily halted NASA Mars DRM work in 1994.

The civilian space agency resumed its Mars DRM studies after the announcement in August 1996 of the discovery of possible microfossils in martian meteorite ALH 84001. This enabled NASA planners to release their baseline chemical-propulsion DRM 3.0 in 1998. There was no official DRM 2.0, though a "scrubbed" (that is, mass-reduced) version of DRM 1.0 bears that designation in at least one NASA document.

Shortly thereafter, NASA's Johnson Space Center (JSC) in Houston, Texas, which led the DRM study effort, was diverted from DRM work by the in-house COMBO lander study (more on this below). Left largely to its own devices, NASA GRC developed a pair of DRM 3.0 variants: a solar-electric propulsion (SEP) DRM 3.0 and the BNTR DRM 3.0 discussed here.

In BNTR DRM 3.0, two unpiloted spacecraft would leave Earth for Mars during the 2011 low-energy Mars-Earth transfer opportunity, and a third, bearing the crew, would depart for Mars during the corresponding opportunity in 2014. Components for the three spacecraft would reach Earth orbit on six Shuttle-Derived Heavy-Lift Vehicles (SDHLVs), each capable of launching 80 tons into 220-mile-high assembly orbit, and in the payload bay of a winged, reusable Space Shuttle Orbiter, which would also deliver the Mars crew.

The SDHLV, often designated "Magnum," was a NASA Marshall Space Flight Center conceptual design. The Magnum booster would burn liquid hydrogen (LH2)/liquid oxygen (LOX) chemical propellants in its core stages and solid propellant in its side-mounted boosters. Magnum drew upon existing Space Shuttle hardware: its core stages were derived from the Space Shuttle External Tank and its twin solid-propellant rocket boosters were based on the Shuttle's twin Solid-Rocket Boosters.

The mighty Magnum was the conceptual ancestor of the equally conceptual Ares V and the Space Launch System, now under development. Image credit: NASA.
SDHLV 1 would launch BNTR stage 1 with 47 tons of LH2 propellant on board. Each BNTR DRM mission would need three 28-meter-long, 7.4-meter-diameter BNTR stages. The BNTR stages would each include three 15,000-pound-thrust BNTR engines developed as part of a joint U.S./Russian research project in 1992-1993.

SDHLV 2 would boost an unpiloted 62.2-ton cargo lander into assembly orbit. The cargo lander would include a bullet-shaped Mars aerobrake and entry heat shield (this would double as the cargo lander's Earth launch shroud), parachutes for landing, a descent stage, a 25.8-ton Mars surface payload including an in-situ resource utilization (ISRU) propellant factory, four tons of "seed" LH2 to begin the process of manufacturing propellants on Mars, and a partly fueled Mars Ascent Vehicle (MAV) made up of a conical Earth Crew Return Vehicle (ECRV) capsule and an ascent stage. The cargo and habitat lander engines would burn liquid methane fuel and LOX.

SDHLV launch 3, identical to SDHLV launch 1, would place into assembly orbit BNTR stage 2 containing 46 tons of LH2 propellant. SDHLV launch 4 would place the unpiloted 60.5-ton habitat lander into assembly orbit. The habitat lander would include a Mars aerobrake & entry shield/launch shroud identical to that of the cargo lander, parachutes, a descent stage, and a 32.7-ton payload including the crew's Mars surface living quarters.

The BNTR stage forward section would include chemical thrusters. These would provide maneuvering capability so that the stages could dock with the habitat and cargo landers in assembly orbit. During flight to Mars, the thrusters would provide each stage/lander combination with attitude control.

2011: the unmanned BNTR 1 stage/cargo lander and BNTR 2 stage/habitat lander spacecraft orbit the Earth prior to departure for Mars. Image credit: NASA.
The BNTR 1/cargo lander combination would have a mass of 133.7 tons, while the BNTR 2/habitat lander combination would have a mass of 131 tons. Both combinations would measure 57.5 meters long. As the 2011 launch window for Mars opened, the BNTR stages would fire their engines to depart assembly orbit for Mars.

Each BNTR engine would include a nuclear reactor. When moderator elements were removed from its nuclear fuel elements, the reactor would heat up. To cool the reactor so that it would not melt, turbopumps would drive LH2 propellant through it. The reactor would transfer heat to the propellant, which would become an expanding very hot gas and vent through an LH2-cooled nozzle. This would propel the spacecraft through space.

Following completion of Earth-orbit departure, the BNTR engine reactors would switch to electricity-generation mode. In this mode, they would operate at a lower temperature than in propulsion mode, but would still be capable of heating a working fluid that would drive three turbine generators. Together the generators would make 50 kilowatts of electricity. Fifteen kilowatts would power a refrigeration system in the BNTR stage that would prevent the LH2 it contained from boiling and escaping.

Much like the LH2 propellant in BNTR propulsion mode, the working fluid would cool the reactor; unlike the LH2, however, it would not be vented into space. After leaving the turbine generators, it would pass through a labyrinth of tubes in radiators mounted on the BNTR stage to discard leftover heat, then would cycle through the reactors again. The cycle would repeat continuously throughout the journey to Mars.

2012: Cargo lander/Mars Ascent Vehicle Landing. Image credit: NASA.
As Mars loomed large ahead, the turbine generators would charge the lander batteries. The BNTR stages would then separate and fire their engines to miss Mars and enter a safe disposal orbit around the Sun. The landers, meanwhile, would aerobrake in the martian upper atmosphere. The habitat lander would capture into Mars orbit and extend twin solar arrays to generate electricity. The cargo lander would capture into orbit, then fire six engines to deorbit and enter the atmosphere a second time.

After casting off its heat shield, it would deploy three parachutes. The engines would fire again, then landing legs would deploy just before touchdown. The GRC engineers opted for a horizontal landing configuration; this would, they explained, prevent tipping and provide the astronauts with easy access to the lander's cargo.

As illustrated in the cargo lander image above and the MAV launch image below, the four MAV engines would serve double-duty as cargo lander engines. In addition to saving mass by eliminating redundant engines, this would test-fire the engines before the crew used them as MAV ascent engines.

2012: Automated propellant manufacture for MAV ascent begins. Image credit: NASA.
The cargo lander would touch down on Mars with virtually empty tanks. After touchdown, a teleoperated cart bearing a nuclear power source would lower to the ground and trundle away trailing a power cable. Controllers on Earth would attempt to position it so that the radiation it emitted would not harm the astronauts (for example, behind a sand dune or boulder pile). The reactor's first job would be to power the lander's ISRU propellant plant, which over several months would react the seed hydrogen brought from Earth with martian atmospheric carbon dioxide in the presence of a catalyst to produce 39.5 tons of liquid methane fuel and LOX oxidizer for the MAV ascent engines.

SDHLV launch 5, identical to SDHLV launches 1 and 3, would mark the start of launches for the 2014 Earth-Mars transfer opportunity. It would place BNTR stage 3 into assembly orbit with about 48 tons of LH2 on board. Because it would propel a piloted spacecraft, its BNTR engines would require a new design feature: each would include a 3.24-ton shield to protect the crew from the radiation it produced while in operation. The shields each would create a conical radiation "shadow"; the radiation shadows would overlap to create a safe zone in which the crew would remain while they were inside or close to their spacecraft.

2013: the BNTR 3 stage and the first Crew Transfer Vehicle components dock automatically in Earth orbit. Image credit: NASA.
Thirty days after SDHLV launch 5, SDHLV launch 6 would place into assembly orbit a 5.1-ton spare Earth Crew Return Vehicle (ECRV) attached to the front of an 11.6-ton truss. A 17-meter-long tank with 43 tons of LH2 and a two-meter-long drum-shaped logistics module containing 6.9 tons of contingency supplies would nest along the truss's length. BNTR stage 3 and the truss assembly would rendezvous and dock, then propellant lines would automatically link the truss tank to BNTR stage 3.

A Shuttle Orbiter carrying the Mars crew and a 20.5-ton deflated Transhab module would rendezvous with the BNTR stage 3/truss combination one week before the crew's planned departure for Mars. Following rendezvous, the spare ECRV would undock from the truss and fly automatically to a docking port in the Space Shuttle payload bay. Astronauts would then use the Orbiter's robot arm to hoist the Transhab from the payload bay and dock it to the front of the truss in the spare ECRV's place.

2014: Crew and a deflated Transhab arrive on board a Space Shuttle Orbiter to complete Crew Transfer Vehicle assembly. Image credit: NASA.
The Mars astronauts would enter the spare ECRV and pilot it to a docking at a port on the Transhab's front, then enter the cylindrical Transhab's solid core and inflate its fabric-walled outer volume. The inflated Transhab would measure 9.4 meters in diameter. Unstowing floor panels and furnishings from the core and installing them in the inflated volume would complete assembly. Transhab, truss, and BNTR stage 3 would make up the 64.2-meter-long, 166.4-ton Crew Transfer Vehicle (CTV).

The CTV's truss-mounted tank and BNTR stage 3 would hold 90.8 tons of LH2 at the start of CTV Earth-orbit departure on 21 January 2014. The truss tank would provide 70% of the propellant needed for departure. In the most demanding departure scenario, the BNTR engines would fire twice for 22.7 minutes each time to push the CTV out of Earth orbit toward Mars.

2014: Crew Transfer Vehicle departs Earth orbit. Image credit: NASA.
Transhab cutaway (weightless design). Floor and ceiling would be reversed in the NASA Glenn artificial-gravity design. "Down" would thus be toward the top of this image, where the airlock and Earth Crew Return Vehicle capsule would be located. Image credit: NASA.
Following Earth-orbit departure, the crew would jettison the empty truss tank and use small chemical-propellant thrusters to start the CTV rotating end over end at a rate of 3.7 rotations per minute. This would create acceleration equal to one Mars gravity (38% of Earth gravity) in the Transhab module. Artificial gravity was a late addition to BNTR DRM 3.0; it made its first appearance in a June 1999 paper, not in the original July 1998 paper describing BNTR DRM 3.0.

In artificial-gravity mode, "down" would be toward the spare ECRV on the CTV's nose; this would make the Transhab's forward half its lower deck. Halfway to Mars, about 105 days out from Earth, the astronauts would stop rotation and perform a course-correction burn using the attitude-control thrusters. They would then resume rotation for the remainder of the trans-Mars trip.

The CTV would arrive in Mars orbit on 19 August 2014. The crew would halt rotation, then three BNTR engines would fire for 12.3 minutes to slow the spacecraft for Mars orbit capture. In its loosely bound elliptical Mars orbit, the spacecraft would circle the planet once per 24.6-hour martian day.

2014: Crew Transfer Vehicle arrival in Mars orbit. Image credit: NASA.
The crew would pilot the CTV to rendezvous with the habitat lander waiting in Mars orbit, taking care to place it in the CTV's radiation shadow. If the cargo lander on the surface or the habitat lander in Mars orbit malfunctioned while awaiting the crew's arrival, then the crew would remain in the CTV in Mars orbit until Mars and Earth aligned for the flight home (a wait time of 502 days). They would survive by drawing upon contingency supplies in the drum-shaped logistics module attached to the truss.

If the orbiting habitat lander and landed cargo lander checked out as healthy, however, then the crew would fly the spare ECRV to a docking port on the habitat lander's side. After discarding the spare ECRV and the habitat solar arrays, they would fire the habitat lander's engines, enter the martian atmosphere, and land near the cargo lander.

The habitat lander's horizontal configuration would provide the astronauts with ready access to the martian surface. After the historic first footsteps on Mars, the astronauts would inflate a Transhab-type habitat attached to the side of the habitat lander, run a cable from the habitat lander to the nuclear power source cart, unload at least one unpressurized crew rover, and commence a program of Mars surface exploration that would, if all went as planned, last for nearly 17 months.

In case of hardware failure or other emergency, the crew could retreat to the MAV and return early to the orbiting CTV. They would, however, have to wait in Mars orbit until Mars and Earth aligned to permit a minimum-energy Mars-Earth transfer (that is, until the originally planned end of their stay at Mars).

2014-2015: The first Mars campsite. In the foreground is the habitat lander with inflated Transhab surface habitat; in the background, the nuclear power source cart and the cargo lander with Mars Ascent Vehicle. Image credit: NASA.
2014-2015: Exploring Mars with a crew rover and two teleoperated robot rovers, one small and one large. Image credit: NASA.
2014-2015: Drilling for water, geologic history, and, just possibly, life. Image credit: NASA.
2015: Mars Ascent Vehicle liftoff. Image credit: NASA.
Near the end of the surface mission, the unmanned CTV would briefly fire its nuclear engines to trim its orbit for the crew's return. The MAV bearing the crew and about 90 kilograms of Mars samples would then lift off. Taking care to remain within the the radiation shadows of the CTV's BNTR engines, it would dock at the front of the Transhab, then the astronauts would transfer to the CTV. They would cast off the spent MAV ascent stage, but would retain the MAV ECRV for Earth atmosphere reentry.

The CTV would leave Mars orbit on 3 January 2016. Prior to Mars orbit departure, the astronauts would abandon the contingency supply module on the truss to reduce their spacecraft's mass so that the propellant remaining in BNTR stage 3 would be sufficient to launch them home to Earth. They would then fire the BNTR engines for 2.9 minutes to change the CTV's orbital plane, then again for 5.2 minutes to escape Mars and place themselves on course for Earth.

Soon after completion of the second burn, the crew would fire attitude-control thrusters to spin the CTV end-over-end to create acceleration equal to one Mars gravity in the Transhab. About halfway home they would stop rotation, perform a course correction, then resume rotation. Flight home to Earth would last 190 days.

2016: Return to the Earth-Moon system. Image credit: NASA.
Near Earth, the crew would stop CTV rotation for the final time, enter the MAV ECRV with their Mars samples, and undock from the CTV, again taking care to remain in the BNTR engine radiation shadows as they moved away. The abandoned CTV would fly past Earth and enter solar orbit. The MAV ECRV, meanwhile, would re-enter Earth's atmosphere on 11 July 2016.

The authors compared their Mars plan with the baseline chemical-propulsion DRM 3.0 and with the NASA GRC SEP DRM 3.0. They found that their plan would need eight vehicle elements, of which four would have designs unique to BNTR DRM 3.0. The baseline DRM 3.0, by contrast, would need 14 vehicle elements, 10 of which would be unique, and SEP DRM 3.0 would need 13.5 vehicle elements, 9.5 of which would be unique. BNTR DRM 3.0 would require that 431 tons of hardware and propellants be placed into Earth orbit; the baseline DRM 3.0 would need 657 tons and SEP DRM 3.0, 478 tons. Borowski and his colleagues argued that fewer vehicle designs and reduced mass would mean reduced cost and mission complexity.

The BNTR DRM 3.0 variant became the basis for DRM 4.0, which was developed during NASA-wide studies in 2001-2002 (though NASA documents occasionally back-date DRM 4.0 to 1998, when BNTR DRM 3.0 was first proposed). DRM 4.0 differed from BNTR DRM 3.0 mainly in that it adopted a "Dual Lander" design concept developed as part of JSC's 1998-1999 COMBO lander study. COMBO was the brainchild of William Schneider, NASA JSC Engineering Directorate boss.

Dual Lander concept. The lander in the foreground is the habitat; the background lander is the Mars Descent/Ascent Vehicle. Image credit: NASA.
The Dual Lander concept grew from COMBO's main design guideline, which was to develop a low-mass "Apollo-style" piloted Mars landing mission. A major change from past Mars DRMs was no reliance on ISRU. As in BNTR DRM 3.0, two cargo missions would leave Earth one minimum-energy Earth-Mars transfer opportunity ahead of the crew; in DRM 4.0, however, these would take the form of a Mars lander that would also include an ascent vehicle for returning the crew to the CTV in Mars orbit and a cargo lander with an inflatable donut-shaped habitat. The former could by itself support a short-stay (~30-day) Mars surface mission; the latter would enable a Mars surface stay of more than 400 days.

In July 2009, NASA released a version of DRM 4.0 modified to use planned Constellation Program hardware (for example, the Ares V heavy-lift rocket in place of the Magnum and the Orion Multi-Purpose Crew Vehicle in place of the ECRVs). The space agency dubbed the new DRM Design Reference Architecture (DRA) 5.0.

The DRA 5.0 Mars plan acknowledged that, largely as a result of the 1 February 2003 Columbia accident, the Space Shuttle would be retired after the remaining Orbiters — Endeavour, Discovery, and Atlantis — completed their part of the task of building the International Space Station. The last Space Shuttle mission, STS-135, took place in July 2011.

DRA 5.0 also saw the return of ISRU. A Descent/Ascent Vehicle (DAV) and a Surface Habitat (SHAB) would capture into Mars orbit in the first minimum-energy Earth-Mars transfer opportunity. The DAV would descend, land, and begin making propellants for its ascent stage. The SHAB would loiter in orbit awaiting arrival of a crew on board a Mars Transfer Vehicle (MTV) launched from Earth during the second Earth-Mars transfer opportunity of the mission. The crew would transfer to the SHAB in an Orion/service module and land on Mars near the DAV. After a stay on Mars lasting more than 400 days, they would lift off in the DAV ascent stage, dock with the waiting MTV, and return to Earth.

Though DRA 5.0 exerts influence on current NASA planning, the precise form a piloted Mars mission will eventually take remains unclear at this writing. NASA increasingly has shifted its attention toward finding low-cost stepping stones that could lead to a piloted Mars landing in the late 2030s. A crew-tended — that is, not permanently staffed — Deep Space Gateway space station in cislunar space, for example, could be established through a series of Orion missions launched using the Space Launch System (SLS) heavy-lift rocket (SLS replaced Ares V in 2010). Other possible interim steps toward Mars include an SLS-launched robotic Mars Sample Return mission in the mid-2020s and a piloted mission to Mars orbit in the early 2030s, perhaps using a Deep Space Transport based partly on Deep Space Gateway hardware.

Acronyms

BNTR = Bimodal Nuclear Thermal Rocket
CTV = Crew Transfer Vehicle
DAV = Descent/Ascent Vehicle
DRA = Design Reference Architecture
DRM = Design Reference Mission
ECRV = Earth Crew Return Vehicle
GRC = Glenn Research Center
ISRU = In-Situ Resource Utilization
JSC = Johnson Space Center
LH2 = liquid hydrogen
LOX = liquid oxygen
MAV = Mars Ascent Vehicle
MTV = Mars Transfer Vehicle
SDHLV = Shuttle-Derived Heavy-Lift Vehicle
SEI = Space Exploration Initiative
SEP = Solar-Electric Propulsion
SHAB = Surface Habitat
SLS = Space Launch System

Sources

"Bimodal Nuclear Thermal Rocket (NTR) Propulsion for Power-Rich, Artificial Gravity Human Exploration Missions to Mars," IAA-01-IAA.13.3.05, Stanley K. Borowski, Leonard A. Dudzinski, and Melissa L. McGuire; paper presented at the 52nd International Astronautical Congress in Toulouse, France, 1-5 October 2001.

"Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using 'Bimodal' NTR and LANTR Propulsion," AIAA-98-3883, Stanley K. Borowski, Leonard A. Dudzinski, and Melissa L. McGuire; paper presented at the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit in Cleveland, Ohio, 13-15 July 1998.

"Artificial Gravity Vehicle Design Option for NASA's Human Mars Mission Using 'Bimodal' NTR Propulsion," AIAA-99-2545, Stanley K. Borowski, Leonard A. Dudzinski, and Melissa L. McGuire; paper presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit in Los Angeles, California, 20-24 June 1999.

NASA Exploration Team (NEXT) Design Reference Missions Summary, NASA, 12 July 2002 [draft].

"Enabling Human Deep Space Exploration with the Deep Space Gateway," Tim Cichan, Bill Pratt, and Kerry Timmons, Lockheed Martin; presentation to the Future In-Space Operations telecon, 30 August 2017.

More Information

Humans on Mars in 1995! (1980-1981)

Bridging the Gap Between Space Station and Mars: The IMUSE Strategy (1985)

The Collins Task Force Says Aim for Mars (1987)

Sally Ride's Mission to Mars (1987)

Footsteps to Mars (1993)