13 February 2018

Around the Moon in 80 Hours (1958)

The Earth-Moon binary as imaged by the Near Earth Asteroid Rendezvous (NEAR) Shoemaker Discovery mission during its Earth gravity-assist flyby on 23 January 1998. Image credit: Johns Hopkins University Applied Physics Laboratory/NASA
On 29 July 1958, President Dwight Eisenhower signed into law the National Aeronautics and Space Act, which created the civilian National Aeronautics and Space Administration (NASA). Eisenhower saw NASA as a way of separating the serious military business of spy satellite and nuclear missile development from "stunts" aimed at responding to Soviet prestige victories in space. In the old General's view, such stunts included launching a man into Earth orbit.

In a presentation given the following month to the American Astronautical Society at Stanford University, Dandridge Cole and Donald Muir, engineers with The Martin Company in Denver, Colorado, detailed how NASA might launch humans around Earth's moon. First, however, they warned that the "Russians may have such a long lead. . .that they will have made landings on the [M]oon before. . .our first circumlunar flight." They predicted that the Soviet Union would be capable of a piloted circumlunar flight in 1963, four years before the United States. In a dig at President Eisenhower, Cole and Muir added that "on the technical side, at least, there seems to be no reason why this goal could not be accomplished [by the U.S.] by 1963."

They outlined a general plan of piloted spaceflight development. Within four years, Cole and Muir wrote, the first American would be launched into Earth orbit using a missile already under development. The same missile might then be used to launch components for a circumlunar spacecraft into Earth orbit. Alternately — and this was their preferred method — missiles might be clustered to form a single large rocket capable of launching the circumlunar spacecraft from Earth's surface on a direct path around the Moon.

The four-stage "Missile B" rocket would launch the circumlunar astronaut around the Moon. Image credit: The Martin Company
The Martin engineers estimated that a 160,000-pound-thrust U.S. launch vehicle ("Missile A") could become available by 1963; to create their circumlunar launcher ("Missile B"), they proposed clustering four Missile A's to create a first stage capable of generating 610,000 pounds of thrust. Missile B's second stage would comprise a single Missile A, and its third and fourth stages would, respectively, comprise a 40,000-pound-thrust rocket and a 10,000-pound-thrust rocket.

Though a two-week circumlunar trip would require the least energy — and thus the smallest launch vehicle — Cole and Muir opted for a trip lasting three or four days. They did this to protect the astronaut's psychological health. "For one man alone in a tiny sealed capsule on a journey of 250,000 miles from the [E]arth," they explained, "the difference between three or four days and two weeks might approach infinity."

Reduced trip time also would slash the quantity of life-support consumables the pilot would need. The amount of energy required to reduce the trip time from two weeks to three or four days would be modest, they estimated, though reducing it still further would demand a prohibitive amount of energy — and thus an undesirably large launch vehicle.

The bucket-shaped circumlunar capsule would weigh 9000 pounds. Cole and Muir may have based its shape on nuclear warhead delivery systems under development at the time they wrote their paper.

The capsule's circumlunar path would have three parts. The outbound leg would require 35.4 hours. It would be followed by a 9.3-hour "hyperbola" past the Moon. The capsule would pass just 10 miles over the unknown farside hemisphere, where the "synthesizing power of the human brain [would] permit collection of more accurate and more meaningful data than could be obtained by photographic techniques alone."

The third leg of the mission, the 35.4-hour fall back to Earth, would mirror the outbound leg. The circumlunar voyager would be treated to a magnificent view of Earth rising over the lunar horizon as he began his journey home.

Cutaway of Cole and Muir's circumlunar capsule showing the water-filled "tub" for protecting the astronaut from high deceleration during Earth-atmosphere reentry. A variant of the circumlunar capsule would serve as the first lunar lander. Image credit: The Martin Company
The heat shield for high-speed Earth-atmosphere reentry would weigh just 500 pounds, Cole and Muir estimated. As Earth filled the capsule's view ports, the pilot's "bathtub-type" couch would fill with water to cushion him from reentry deceleration. A lid with a window would prevent the water from escaping in zero-G before deceleration commenced. Cole and Muir wrote that, because "the water would be needed only in the last phase of the trip, it could be reserve drinking or washing water." Despite the potential weight savings, they hesitated "to suggest that it might be water. . .already used for drinking or washing."

The capsule would enter Earth's atmosphere blunt nose first. As deceleration began, the bathtub couch would pivot so that the pilot faced the capsule's flat aft end. This would cause him to feel capsule deceleration through his back, enabling him to withstand greater sustained deceleration loads.

After a fiery atmosphere reentry, the capsule would deploy fins for steering. Landing would be by parachute at sea or on U.S. soil near a waiting recovery crew.

Cole and Muir expected that the piloted circumlunar journey would merely open the door to lunar exploration. A series of automated lunar landings would soon follow it. Some would deliver automated scientific instruments that would explore the lunar environment, while others would stockpile propellants and supplies on the surface.

Toward the end of the 1960s decade, the same multi-part "Missile B" rocket design that launched the circumlunar flight would launch a piloted lunar lander. The pre-landed supplies and propellants would, Cole and Muir wrote, enable use of a variant of the circumlunar spacecraft as a small, low-cost lunar lander. Landers would set down on the Moon with nearly empty propellant tanks, refuel using the pre-landed propellants, and draw on pre-landed supplies to enable ever-longer surface stays. A temporary lunar base would be established by 1970, and permanent bases permitting "extensive exploration of the major areas of the [M]oon's surface" would follow soon after.

Cole and Muir ended their paper with rousing words. "Time may well prove," they wrote, "that the man who climbs out of [the circumlunar] capsule to receive the cheers of the recovery crew. . .made a voyage of greater importance to the human race than that of Columbus."

Source

"Around the Moon in 80 Hours," D. Cole and D. Muir, Advances in Astronautical Sciences, Volume 3, Proceedings of the Western Regional Meeting of the American Astronautical Society, 18-19 August 1958, pp. 27-1 through 27-30, 1958

More Information

"He Who Controls the Moon Controls the Earth" (1958)

Plush Bug, Economy Bug, Shoestring Bug, (1961)

Harold Urey and the Moon (1961)

Space Race: The Notorious 1962 Proposal to Launch an Astronaut on a One-Way Trip to the Moon (1962)

05 February 2018

Creation of an Artificial Lunar Atmosphere (1974)

The Lunar Module included a descent stage for descent from lunar orbit and lunar surface landing and an ascent stage for return to lunar orbit. This image, captured from television transmitted to Earth by the parked Apollo 16 Lunar Roving Vehicle, shows the moment the ascent stage engine of the Lunar Module Orion ignited. Hot gas from the engine plume blasted pieces of thermal insulation kilometers in all directions. Image credit: NASA
On the Earth's moon, nothing is a valuable resource. At the lunar surface, where astronauts hop and rovers rove, the environment is a nearly pure vacuum. The total amount of gas spread over the Moon's entire surface - which has an area greater than that of Africa - is less than 50 metric tons. This makes the Moon a potentially important site for high-tech industrial processes.

The Moon owes its lack of atmosphere to the Sun. Solar wind and ultraviolet light ionize gas atoms, making them susceptible to transport by the interplanetary magnetic field. Half the atoms escape into space and the rest are driven into the lunar surface material.

In 1974, in the pages of the prestigious publication Nature, Richard Vondrak of NASA's Goddard Research Center in Greenbelt, Maryland, pointed out that lunar vacuum "is a fragile state that could be modified by human activity." He urged that it be "treated carefully if it is to be preserved."

At the time Vondrak wrote, his concern was not wholly academic. In the early 1970s, not a few engineers within NASA expected that the Space Shuttle would lead to a return to the Moon in the 1980s. A lunar outpost where astronauts would conduct resource extraction and beneficiation experiments and test prototype high-vacuum industrial processes would follow soon after.

Vondrak estimated that each of the six Apollo landing missions had doubled the mass of the Moon's atmosphere. He cited two main sources of Moon pollution: life support gases released from Apollo space suits and the Apollo Lunar Module (LM) cabin and rocket exhaust from the Apollo LM rocket motors. The lunar atmosphere returned to normal after a month, however, leading Vondrak to assert that "small lunar colonies" and modest mining would pose "no lasting hazard to the lunar environment."

If, however, more "vigorous" human activity pumped up the lunar atmosphere to a mass of one billion metric tons, solar wind and ultraviolet light would be unable to ionize more than its outermost fringe. The thin lunar atmosphere would then persist for centuries even if no more gas were added, Vondrak wrote.

Vondrak looked briefly at the far-out prospect of creating an Earth-density atmosphere on the Moon by vaporizing oxygen-rich lunar dirt using nuclear blasts. At the time he wrote, the U.S. nuclear arsenal numbered about 28,000 warheads. He estimated that generating an Earth-density atmosphere would require roughly 10,000 times more warheads than the U.S. possessed. Not surprisingly, Vondrak judged this approach to be impractical.

Source

"Creation of an Artificial Lunar Atmosphere," Richard R. Vondrak, Nature, Vol. 248, 19 April 1974, pp. 657-659

More Information

There's a Hell of a Good World Next Door

The Eighth Continent

Rocket Belts and Rocket Chairs: Lunar Flying Units

"A Continuing Aspect of Human Endeavor": Bellcomm's January 1968 Lunar Exploration Plan

03 February 2018

Update: New Job, New Plans

Gateway to the lunar surface base. Image credit: Boeing.
As some of you are aware, at the end of December I left my job as archivist, map librarian, and outreach guy at the U.S. Geological Survey's Astrogeology Science Center in Flagstaff, Arizona. I worked there for a little over 10 years. At the beginning of January, I started a new job as Community Outreach Specialist at the Lunar Reconnaissance Orbiter Camera Science Operations Center (LROC SOC), which is part of the School of Earth and Space Exploration (SESE) at Arizona State University in Tempe, a suburb of Phoenix, Arizona.

I am currently working remotely and part-time - we'll move down to Phoenix in a few months and I'll go full-time - yet I find myself putting in a lot of extra hours to get to know LRO, LROC, SESE, and ASU as quickly as I can. This is, after all, a dream job for me. I had long hoped that I might become part of a space mission team, and now I've made it happen.

This is a big life-change, which unfortunately means that I have neglected this blog. I've stopped scratching items off my list of planned posts and stopped suddenly writing impromptu new posts. I've managed a couple of omnibus posts bringing together in chronological order links to past posts, but I completed my most recent meaty new post just before Christmas.

It might sound as though I plan to abandon writing about spaceflight outside the boundaries of my LROC job. That is, however, not correct. In fact, my new job has me so fired up that I can foresee a day when I'll be settled in and have a lot of excess energy to expend. It feels like someone turned the oxygen back on.

I am looking for ways to make this blog serve two purposes: first, to be a really nifty blog that teaches people about cool space history stuff and, second, to help me learn things applicable to my LROC job. So - you heard it here first - I hereby declare 2018 to be The Spaceflight History Year of the Moon Base.

I know what you are thinking now. "Yeah, right, he's making promises again and he ain't gonna come through. He'll get distracted and it'll be like, 'Hey, look, Mars is at opposition!'" (More likely, it'll be like, "Dammit, kiddo, pack up your books, the moving van is due in 15 minutes!")

So, getting back to this moon base thing. You see, several years ago I contracted with NASA to write a lunar counterpart to my book Humans to Mars. Then my wife was killed and my daughter gravely injured in a car crash, putting everything on hold, NASA changed historians, and when I asked them about getting started on Humans to the Moon again, I found that they had lost interest.

I had, however, by then done much of my research. I still have the documents I collected, and now the time seems right to put them to good use.

Just to get you in the proper frame of mind, here are links to the few moon base-type posts that are already part of this blog. Enjoy!

"A Continuing Aspect of Human Endeavor": Bellcomm's January 1968 Lunar Exploration Program

As Gemini Was to an Apollo Lunar Landing by 1970, So Apollo Would Be to a Permanent Lunar Base in 1980 (1968)

SEI Swan Song: International Lunar Resources Exploration Concept (1993)