Retrograde Module separation. Image credit: Jeff Bateman/David S. F. Portree. |
On 11 July 1962, NASA Administrator James Webb made public NASA's mode choice. He told a press conference that LOR Apollo would leave Earth on a Saturn C-5 (as the Saturn V rocket was known at the time) capable of launching 45 tons to the Moon, and that the agency would also study a two-man Direct Ascent Apollo lunar landing mission launched on a Saturn C-5. In Direct Ascent, a single spacecraft would carry the astronauts from Earth to the lunar surface and back again.
While NASA moved ahead with LOR, it also hired McDonnell Aircraft Company and TRW Space Technology Laboratories to study Wiesner's preferred mode. For McDonnell, manufacturer of the one-man Mercury and two-man Gemini spacecraft, the study had three aims.
McDonnell would develop a conceptual Direct Ascent Moonship design incorporating a two-man CM similar to the three-man North American Aviation (NAA) Apollo CM. When NAA contracted with NASA to build the Apollo CSM in November 1961, it had assumed that Apollo would use either Direct Ascent or Earth-Orbit Rendezvous. In both of those mission modes, the CSM would have had the honor of landing on the Moon. NAA did not welcome NASA's choice of LOR.
McDonnell would also look at using Gemini for the Direct Ascent Moon landing mission. At the time it conducted its study, Gemini's maiden flight was scheduled for launch in 1964. Known initially as "Mercury Mark II," the spacecraft, which was meant to reach Earth orbit atop a Titan II rocket, was meant to provide NASA with experience with spacewalks and rendezvous and docking ahead of Apollo.
From aft to front, the Gemini spacecraft consisted of the Adapter Module, the Service Module, and the CM. The Gemini CM, which measured 8.7 feet across its heatshield and weighed 5775 pounds, had two hatches (one per astronaut) with one forward-facing window each. Gemini could carry enough life support consumables and fuel cell reactants for a 14-day Earth-orbital mission.
Cutaway of a Gemini spacecraft. Image credit: NASA. |
The company proposed four two-man Direct Ascent Command Module designs. The company's conical two-man Apollo would measure 8.8 feet tall and 10.4 feet across its heat shield. (For comparison, the three-man Apollo was 10.6 feet tall and 12.8 feet across.) Interior volume would total 185 cubic feet, of which 73 cubic feet would be available for the crew.
The astronauts would enter and leave the module through a hatch with two windows located above the pilot's couch. A blow-out hatch with one window located above the co-pilot's couch would provide emergency egress. During Earth launch and reentry, lunar liftoff, and while sleeping on the Moon, the astronauts would recline in their couches facing the nose and main control panel. This would place the windows above and behind their heads.
During lunar landing, they would sit upright on their couch backs facing landing controls and view the Moon's surface through the windows. Following Earth atmosphere reentry, the two-man Apollo CM would lower to a gentle land landing on three 71-foot-diameter parachutes.
Lunar Gemini I modifications would include a beefed-up heat shield so that it could withstand reentry at lunar-return speed, improved radio systems for communication between Moon and Earth, lunar landing controls, and life support consumables stocks sufficient to support an eight-day lunar mission. The spacecraft would also include two systems for viewing of the lunar surface during landing. The right-side astronaut would recline in his couch normally (back toward heat shield and lunar surface) and deploy an external mirror for an "over-the-shoulder" surface view. The left-side astronaut would roll over in his couch and view the lunar surface directly through a transparent "viewing dome" built into his hatch. The Lunar Gemini I Command Module would weigh 6802 pounds.
Except for its Earth-landing system, Lunar Gemini II would closely resemble Lunar Gemini I. Until June 1964, NASA planned a land landing for its Earth-orbital Gemini spacecraft. The Gemini CM would deploy an steerable delta-winged paraglider during descent to Earth and glide to a touchdown on skids or wheels. McDonnell retained this system in its Lunar Gemini I design, but decided to trim weight from Lunar Gemini II by substituting a single 84-foot-diameter parachute and splashdown at sea.
Land landing in the Lunar Gemini II capsule would be not survivable; if emergency land landing became necessary, the astronauts would eject from the falling capsule after reentry and descend on personal parachutes. The Lunar Gemini II Command Module would weigh 6376 pounds.
For its Lunar Gemini III design, McDonnell opted for a launch-escape tower similar to the one used on the Mercury capsule. In the event of a Titan II malfunction, the tower's solid-rocket motor would blast the Lunar Gemini III CM to safety. Couches with shock absorbers would replace the ejection seats, and three 71-foot-diameter parachutes would provide a slower, gentler descent than Lunar Gemini II's single parachute. These modifications would restore the land landing capability lost in Lunar Gemini II. All three Lunar Gemini versions could return up to 85 pounds of scientific equipment and lunar samples to Earth.
The Lunar Gemini III couches could be configured so that the astronauts could sit upright (feet toward heat shield) relative to the Moon's surface during lunar landing. New hatch windows would provide direct views of the lunar surface for both astronauts. The Lunar Gemini III CM would weigh 6453 pounds minus its launch escape tower.
McDonnell proposed that both the two-man Apollo and the Lunar Gemini CMs reach the Moon atop a stack of three propulsion/service modules. The cylindrical, 21.6-foot-diameter, 16.4-foot-tall Retrograde Module would weigh 26.9 tons with a full load (23.8 tons) of liquid hydrogen/liquid oxygen propellants. It would rest atop the Saturn C-5 rocket and its top would attach to the bottom of the Terminal Landing Module. The Retrograde Module would perform course corrections during flight to the Moon, lunar orbit insertion, de-orbit, and descent to 6000 feet above the Moon, then would detach from the Terminal Landing Module and tumble away to crash on the surface (image at top of post).
Lunar Gemini II on the Moon. Image credit: Jeff Bateman/David S. F. Portree. |
The legs would fold against the Retrograde Module's sides under ejectable streamlined fairings during ascent through Earth's atmosphere. A compartment in the module's underside would hold 165 pounds of scientific gear for exploring the lunar surface.
The top of the Service Module would measure 10.4 feet across if attached to a two-man Apollo CM and 8.7 feet across if joined to a Lunar Gemini CM. It would stand 8.5 feet tall and measure 19.3 feet across its base, where it would attach to the top of the Terminal Landing Module. The Service Module would perform lunar liftoff and course corrections during the flight home to Earth. It would weigh 11.7 tons with a full load (9.7 tons) of hydrazine/nitrogen tetroxide propellants.
In addition to propulsion systems, the Service Module would carry 1148 pounds of CM support equipment, including Gemini fuel cells to provide electricity and drinking water, a surface-mounted radiator for cooling, life-support oxygen tanks, and two boom-mounted radio dish antennas.
The Lunar Gemini II Service Module rocket motor ignites, boosting the Command Module off the Moon. Image credit: Jeff Bateman/David S. F. Portree. |
Rescue modifications would include a guidance system similar to that under development for the automated Surveyor lunar soft-lander; additional liquid oxygen/liquid hydrogen fuel cell reactants (5.7 pounds per day) for powering electric heaters in the Command Module during the 14-day lunar night; additional water (6.5 pounds per day) for evaporative cooling during the 14-day lunar day; and a propellant-saving Surveyor-type "direct descent" landing profile with no stop in lunar orbit before descent to the lunar surface.
NASA/PSAC differences over the Apollo mode choice became public midway through the two-man Direct Ascent study, when Wiesner and Webb argued in front of President Kennedy and reporters during a presidential tour of NASA Marshall Space Flight Center (11 September 1962). Soon after McDonnell submitted its report, NASA reaffirmed its decision to go with LOR (24 October 1962).
Webb threatened to resign if NASA's choice were overruled, and Wiesner, sensing that Kennedy would back his NASA Administrator, acquiesced. On 7 November, the agency finalized its LOR decision by awarding the contract to build the LEM to Grumman Aircraft Engineering Corporation in Bethpage, Long Island.
Source
Direct Flight Apollo Study, Volume I: Two-Man Apollo Spacecraft and Volume II: Gemini Spacecraft Applications, McDonnell Aircraft Corporation, 31 October 1962.
More Information
Plush Bug, Economy Bug, Shoestring Bug (1961)
Space Station Gemini (1962)
More Information
Plush Bug, Economy Bug, Shoestring Bug (1961)
Space Station Gemini (1962)
Glad to see you back. Nice artwork!
ReplyDelete--publiusr
P:
DeleteGlad you like it, and heartfelt apologies for dropping out for a while. I'm trying to write one new post per week - not there yet, but there's hope.
dsfp
Nice to see you back David! I missed your posts. This one is very appropriate to these ARTEMIS times :-)
ReplyDeleteSimon Chabrillat
Simon:
DeleteI feel so bad that I am only just now replying - I had a rough couple of years and somehow notification of comments got shut off. I thought folks had lost interest. I am trying to ramp up again to a new post per week. Wish me luck!
dsfp
Dear David, just found your blog. Wonderful stuff indeed. Pls keep it up.
ReplyDeleteDo you have plans to collate into a new book? I can promise sales of one at least!
Best wishes. Adrian